Mostrar el registro sencillo del ítem
dc.contributor.author
Cocucci, Tadeo Javier
dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Lucini, María Magdalena
dc.contributor.author
Tandeo, Pierre
dc.date.available
2020-12-11T14:56:04Z
dc.date.issued
2020-11
dc.identifier.citation
Cocucci, Tadeo Javier; Pulido, Manuel Arturo; Lucini, María Magdalena; Tandeo, Pierre; Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 2020; 11-2020; 1-27
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/120212
dc.description.abstract
The performance of ensemble-based data assimilation techniques that estimate the state of a dynamical system from partial observations depends crucially on the prescribed uncertainty of the model dynamics and of the observations. These are not usually known and have to be inferred. Many approaches have been proposed to tackle this problem, including fully Bayesian, likelihood maximization and innovation-based techniques. This work focuses on maximization of the likelihood function via the expectation–maximization (EM) algorithm to infer the model error covariance combined with ensemble Kalman filters and particle filters to estimate the state. The classical application of the EM algorithm in a data assimilation context involves filtering and smoothing a fixed batch of observations in order to complete a single iteration. This is an inconvenience when using sequential filtering in high-dimensional applications. Motivated by this, an adaptation of the algorithm that can process observations and update the parameters on the fly, with some underlying simplifications, is presented. The proposed technique was evaluated and achieved good performance in experiments with the Lorenz-63 and Lorenz-96 dynamical systems designed to represent some common scenarios in data assimilation such as nonlinearity, chaoticity and model mis-specification.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EXPECTATION-MAXIMIZATION
dc.subject
MODEL ERROR
dc.subject
PARAMETER ESTIMATION
dc.subject
UNCERTAINTY QUANTIFICATION
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-12-04T19:35:58Z
dc.identifier.eissn
0035-9009
dc.journal.volume
2020
dc.journal.pagination
1-27
dc.journal.pais
Reino Unido
dc.journal.ciudad
LOndres
dc.description.fil
Fil: Cocucci, Tadeo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
dc.description.fil
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
dc.description.fil
Fil: Tandeo, Pierre. Centre National de la Recherche Scientifique; Francia
dc.journal.title
Quarterly Journal of the Royal Meteorological Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/qj.3931
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.3931
Archivos asociados