Mostrar el registro sencillo del ítem

dc.contributor.author
Cocucci, Tadeo Javier  
dc.contributor.author
Pulido, Manuel Arturo  
dc.contributor.author
Lucini, María Magdalena  
dc.contributor.author
Tandeo, Pierre  
dc.date.available
2020-12-11T14:56:04Z  
dc.date.issued
2020-11  
dc.identifier.citation
Cocucci, Tadeo Javier; Pulido, Manuel Arturo; Lucini, María Magdalena; Tandeo, Pierre; Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 2020; 11-2020; 1-27  
dc.identifier.issn
0035-9009  
dc.identifier.uri
http://hdl.handle.net/11336/120212  
dc.description.abstract
The performance of ensemble-based data assimilation techniques that estimate the state of a dynamical system from partial observations depends crucially on the prescribed uncertainty of the model dynamics and of the observations. These are not usually known and have to be inferred. Many approaches have been proposed to tackle this problem, including fully Bayesian, likelihood maximization and innovation-based techniques. This work focuses on maximization of the likelihood function via the expectation–maximization (EM) algorithm to infer the model error covariance combined with ensemble Kalman filters and particle filters to estimate the state. The classical application of the EM algorithm in a data assimilation context involves filtering and smoothing a fixed batch of observations in order to complete a single iteration. This is an inconvenience when using sequential filtering in high-dimensional applications. Motivated by this, an adaptation of the algorithm that can process observations and update the parameters on the fly, with some underlying simplifications, is presented. The proposed technique was evaluated and achieved good performance in experiments with the Lorenz-63 and Lorenz-96 dynamical systems designed to represent some common scenarios in data assimilation such as nonlinearity, chaoticity and model mis-specification.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXPECTATION-MAXIMIZATION  
dc.subject
MODEL ERROR  
dc.subject
PARAMETER ESTIMATION  
dc.subject
UNCERTAINTY QUANTIFICATION  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:35:58Z  
dc.identifier.eissn
0035-9009  
dc.journal.volume
2020  
dc.journal.pagination
1-27  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
LOndres  
dc.description.fil
Fil: Cocucci, Tadeo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.description.fil
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.description.fil
Fil: Tandeo, Pierre. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Quarterly Journal of the Royal Meteorological Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/qj.3931  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.3931