Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm

Cocucci, Tadeo JavierIcon ; Pulido, Manuel ArturoIcon ; Lucini, María MagdalenaIcon ; Tandeo, Pierre
Fecha de publicación: 11/2020
Editorial: John Wiley & Sons Ltd
Revista: Quarterly Journal of the Royal Meteorological Society
ISSN: 0035-9009
e-ISSN: 0035-9009
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

The performance of ensemble-based data assimilation techniques that estimate the state of a dynamical system from partial observations depends crucially on the prescribed uncertainty of the model dynamics and of the observations. These are not usually known and have to be inferred. Many approaches have been proposed to tackle this problem, including fully Bayesian, likelihood maximization and innovation-based techniques. This work focuses on maximization of the likelihood function via the expectation–maximization (EM) algorithm to infer the model error covariance combined with ensemble Kalman filters and particle filters to estimate the state. The classical application of the EM algorithm in a data assimilation context involves filtering and smoothing a fixed batch of observations in order to complete a single iteration. This is an inconvenience when using sequential filtering in high-dimensional applications. Motivated by this, an adaptation of the algorithm that can process observations and update the parameters on the fly, with some underlying simplifications, is presented. The proposed technique was evaluated and achieved good performance in experiments with the Lorenz-63 and Lorenz-96 dynamical systems designed to represent some common scenarios in data assimilation such as nonlinearity, chaoticity and model mis-specification.
Palabras clave: EXPECTATION-MAXIMIZATION , MODEL ERROR , PARAMETER ESTIMATION , UNCERTAINTY QUANTIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.387Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/120212
URL: https://onlinelibrary.wiley.com/doi/10.1002/qj.3931
DOI: http://dx.doi.org/10.1002/qj.3931
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Cocucci, Tadeo Javier; Pulido, Manuel Arturo; Lucini, María Magdalena; Tandeo, Pierre; Model error covariance estimation in particle and ensemble kalman filters using an online expectation–maximization algorithm; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 2020; 11-2020; 1-27
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES