Mostrar el registro sencillo del ítem

dc.contributor.author
Armendáriz, María Inés  
dc.contributor.author
Ferrari, Pablo Augusto  
dc.contributor.author
Frevenza Maestrone, Nicolas Federico  
dc.date.available
2020-12-11T14:23:40Z  
dc.date.issued
2019-04  
dc.identifier.citation
Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico; Gibbs measures over permutations of point processes with low density; Cornell University; arxiv.org; 4-2019; 1-25  
dc.identifier.uri
http://hdl.handle.net/11336/120189  
dc.description.abstract
We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cornell University  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GIBBS MEASURES  
dc.subject
PERMUTATIONS  
dc.subject
FINITE CYCLES  
dc.subject
POISSON POINT PROCESS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Gibbs measures over permutations of point processes with low density  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-03T16:56:10Z  
dc.identifier.eissn
2331-8422  
dc.journal.pagination
1-25  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Frevenza Maestrone, Nicolas Federico. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
arxiv.org  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.03952