Artículo
Gibbs measures over permutations of point processes with low density
Fecha de publicación:
04/2019
Editorial:
Cornell University
Revista:
arxiv.org
e-ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity.
Palabras clave:
GIBBS MEASURES
,
PERMUTATIONS
,
FINITE CYCLES
,
POISSON POINT PROCESS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico; Gibbs measures over permutations of point processes with low density; Cornell University; arxiv.org; 4-2019; 1-25
Compartir