Mostrar el registro sencillo del ítem

dc.contributor.author
Pedrozo, Hector Alejandro  
dc.contributor.author
Dallagnol, Andrea Micaela  
dc.contributor.author
Schvezov, Carlos Enrique  
dc.date.available
2020-12-10T14:21:26Z  
dc.date.issued
2020-11  
dc.identifier.citation
Pedrozo, Hector Alejandro; Dallagnol, Andrea Micaela; Schvezov, Carlos Enrique; Genetic algorithm applied to simultaneous parameter estimation in bacterial growth; World Scientific; Journal of Bioinformatics and Computational Biology; 11-2020; 1-21  
dc.identifier.issn
0219-7200  
dc.identifier.uri
http://hdl.handle.net/11336/120102  
dc.description.abstract
Several mathematical models have been developed to understand the interactions ofmicroorganisms in foods and predict their growth. The resulting model equations forthe growth of interacting cells include several parameters that must be determined forthe specific conditions to be modeled. In the present report, these parameters weredetermined by using inverse engineering and a multi-objective optimization procedurethat allows fitting more than one experimental growth curve simultaneously. A geneticalgorithm was applied to obtain the best parameter values of a model that permit theconstruction of the front of Pareto with 50 individuals or phenotypes. The method wasapplied to three experimental data sets of simultaneous growth of lactic acid bacteria(LAB) and Listeria monocytogenes (LM). Then, the proposed method was comparedwith a conventional mono-objective sequential fit. We concluded that the multiobjectivefit by the genetic algorithm gives superior results with more parameteridentifiability than the conventional sequential approach.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PREDICTIVE MICROBIOLOGY  
dc.subject
BACTERIAL INTERACTIONS  
dc.subject
PARAMETER ESTIMATION  
dc.subject
GENETIC ALGORITHM  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Genetic algorithm applied to simultaneous parameter estimation in bacterial growth  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:36:17Z  
dc.identifier.eissn
1757-6334  
dc.journal.pagination
1-21  
dc.journal.pais
Singapur  
dc.description.fil
Fil: Pedrozo, Hector Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina  
dc.description.fil
Fil: Dallagnol, Andrea Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina  
dc.description.fil
Fil: Schvezov, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina  
dc.journal.title
Journal of Bioinformatics and Computational Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219720020500456  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0219720020500456