Artículo
Irregular wavelet frames and gabor frames
Fecha de publicación:
12/2001
Editorial:
Springer
Revista:
Approximation Theory And Its Applications
ISSN:
1000-9221
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given g ∈ L^2(R^n), we consider irregular wavelet systems of the form {λ^{n/2}_j g(λ_jx − kb)}j∈Z,k∈Z^n , where λ_j > 0 and b > 0. Sufficient conditions for the wavelet system to constitute a frame for L^2(R^n) are given. For a class of functions g ∈ L^2 (R^n) we prove that certain growth conditions on {λ_j} will lead to frames, and that some other types of sequences exclude the frame property. We also give a sufficient condition for a Gabor system {e^{2πib(j,x)}g(x − λ_k}j∈Z^n, k∈Z to be a frame.
Palabras clave:
GROWTH CONDITION
,
WAVELET FRAME
,
GABOR FRAME
,
GABOR SYSTEM
,
WAVELET SYSTEM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Christensen, Ole; Favier, Sergio José; Zo, Felipe; Irregular wavelet frames and gabor frames; Springer; Approximation Theory And Its Applications; 17; 3; 12-2001; 90-101
Compartir
Altmétricas