Artículo
Modeling Video Activity with Dynamic Phrases and Its Application to Action Recognition in Tennis Videos
Vainstein, Jonathan Javier
; Manera, José Francisco
; Negri, Pablo Augusto
; Delrieux, Claudio Augusto
; Maguitman, Ana Gabriela
Fecha de publicación:
11/2014
Editorial:
Springer
Revista:
Lecture Notes In Computer Science
ISSN:
0302-9743
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a novel approach to action recognition in tennis shot sequences. The underlying model considers the per-frame motion to be regarded as a word (within an alphabet of possible motions), and the sequence of frames as a phrase whose meaning is determined by the words given in a specific order. This feature extraction mechanism allows a semantic treatment of the classification stage using Conditional Random Fields. The system was applied on the RGB videos of the THETIS dataset, achieving an accuracy of over 86% in recognizing 12 different tennis shots among several takes produced by 55 different amateur and professional players.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Vainstein, Jonathan Javier; Manera, José Francisco; Negri, Pablo Augusto; Delrieux, Claudio Augusto; Maguitman, Ana Gabriela; Modeling Video Activity with Dynamic Phrases and Its Application to Action Recognition in Tennis Videos; Springer; Lecture Notes In Computer Science; 8827; 11-2014; 909-916
Compartir
Altmétricas