Mostrar el registro sencillo del ítem

dc.contributor.author
Brešar, Boštjan  
dc.contributor.author
Kos, Tim  
dc.contributor.author
Nasini, Graciela Leonor  
dc.contributor.author
Torres, Pablo Daniel  
dc.date.available
2020-11-05T19:11:21Z  
dc.date.issued
2018-05  
dc.identifier.citation
Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel; Total dominating sequences in trees, split graphs, and under modular decomposition; Elsevier Science; Discrete Optimization; 28; 5-2018; 16-30  
dc.identifier.issn
1572-5286  
dc.identifier.uri
http://hdl.handle.net/11336/117720  
dc.description.abstract
A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
GRUNDY TOTAL DOMINATION NUMBER  
dc.subject
MODULAR DECOMPOSITION  
dc.subject
SPLIT GRAPH  
dc.subject
TREE  
dc.subject
VERTEX COVER  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Total dominating sequences in trees, split graphs, and under modular decomposition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-04-05T16:14:46Z  
dc.journal.volume
28  
dc.journal.pagination
16-30  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Brešar, Boštjan. University of Maribor; Eslovenia. Institute of Mathematics, Physics and Mechanics; Eslovenia  
dc.description.fil
Fil: Kos, Tim. Institute of Mathematics, Physics and Mechanics; Eslovenia  
dc.description.fil
Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Discrete Optimization  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.disopt.2017.10.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528617302293  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.06804