Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Total dominating sequences in trees, split graphs, and under modular decomposition

Brešar, Boštjan; Kos, Tim; Nasini, Graciela LeonorIcon ; Torres, Pablo DanielIcon
Fecha de publicación: 05/2018
Editorial: Elsevier Science
Revista: Discrete Optimization
ISSN: 1572-5286
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called the Grundy total domination number, γgr t(G), of G, as introduced in Brešar et al. (2016). In this paper we continue the investigation of this concept, mainly from the algorithmic point of view. While it was known that the decision version of the problem is NP-complete in bipartite graphs, we show that this is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total domination number of an arbitrary forest T is presented, based on the formula γgr t(T)=2τ(T), where τ(T) is the vertex cover number of T. A similar efficient algorithm is presented for bipartite distance-hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs. In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that γgr t(Gk)=k, for any k∈Z+∖{1,3}, and showing that there are no graphs G with γgr t(G)∈{1,3}. We also present such a family, which has minimum possible order and size among all graphs with Grundy total domination number equal to k.
Palabras clave: GRUNDY TOTAL DOMINATION NUMBER , MODULAR DECOMPOSITION , SPLIT GRAPH , TREE , VERTEX COVER
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 231.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/117720
DOI: http://dx.doi.org/10.1016/j.disopt.2017.10.002
URL: https://www.sciencedirect.com/science/article/pii/S1572528617302293
URL: https://arxiv.org/abs/1608.06804
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Brešar, Boštjan; Kos, Tim; Nasini, Graciela Leonor; Torres, Pablo Daniel; Total dominating sequences in trees, split graphs, and under modular decomposition; Elsevier Science; Discrete Optimization; 28; 5-2018; 16-30
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES