Mostrar el registro sencillo del ítem
dc.contributor.author
Toscani, Micaela
dc.contributor.author
Martinez, Sandra Rita
dc.contributor.author
Martínez, Oscar E.
dc.date.available
2020-11-04T17:52:40Z
dc.date.issued
2019-02
dc.identifier.citation
Toscani, Micaela; Martinez, Sandra Rita; Martínez, Oscar E.; Single image deconvolution with super-resolution using the SUPPOSe algorithm; SPIE; Spie Proceedings; 10884; 2-2019; 1-9
dc.identifier.issn
0277-786X
dc.identifier.uri
http://hdl.handle.net/11336/117628
dc.description.abstract
We present the results of super-resolution deconvolution of fluorescent intracellular images using the SUPPOSe algorithm. The image is acquired using a standard fluorescence microscope and a CMOs low noise high dynamic range camera. The algorithm relies in assuming that the image source can be described by an incoherent superposition of point sources and a precise measurement of the microscope point spread function (PSF). The deconvolution problem is converted into finding the number of sources and the position of the sources that maximize the similarity between the measured image and the convolution of the sources with the PSF. The maximization is performed using a genetic algorithm. A fivefold increase in resolution is shown both by inverting a synthesized artificial image and using known beads clusters. The algorithm was applied to reconstructing images from bovine pulmonary artery endothelial cells with fluorescent labels for the F-actin and microtubules. The PSF is measured using 50nm fluorescent beads being the size of the beads the final limitation in the retrieval algorithm. The algorithm is used for the reconstruction requires the precise measurements of the PSF and the noise figure of the camera. It can be applied to reconstruct the image with super-resolution down to λ/10 and also to increase the resolution using a low magnification for wide field objective.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
SPIE
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SUPER-RESOLUTION
dc.subject
DATA DECONVOLUTION
dc.subject
SIGNAL PROCESSING ALGORITHMS
dc.subject
SIGNAL RESOLUTION
dc.subject
IMAGE RESOLUTION
dc.subject.classification
Óptica
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Single image deconvolution with super-resolution using the SUPPOSe algorithm
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-03T16:55:53Z
dc.journal.volume
10884
dc.journal.pagination
1-9
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Toscani, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Martínez, Oscar E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Spie Proceedings
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1117/12.2508869
Archivos asociados