Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Single image deconvolution with super-resolution using the SUPPOSe algorithm

Toscani, MicaelaIcon ; Martinez, Sandra RitaIcon ; Martínez, Oscar E.
Fecha de publicación: 02/2019
Editorial: SPIE
Revista: Spie Proceedings
ISSN: 0277-786X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Óptica

Resumen

We present the results of super-resolution deconvolution of fluorescent intracellular images using the SUPPOSe algorithm. The image is acquired using a standard fluorescence microscope and a CMOs low noise high dynamic range camera. The algorithm relies in assuming that the image source can be described by an incoherent superposition of point sources and a precise measurement of the microscope point spread function (PSF). The deconvolution problem is converted into finding the number of sources and the position of the sources that maximize the similarity between the measured image and the convolution of the sources with the PSF. The maximization is performed using a genetic algorithm. A fivefold increase in resolution is shown both by inverting a synthesized artificial image and using known beads clusters. The algorithm was applied to reconstructing images from bovine pulmonary artery endothelial cells with fluorescent labels for the F-actin and microtubules. The PSF is measured using 50nm fluorescent beads being the size of the beads the final limitation in the retrieval algorithm. The algorithm is used for the reconstruction requires the precise measurements of the PSF and the noise figure of the camera. It can be applied to reconstruct the image with super-resolution down to λ/10 and also to increase the resolution using a low magnification for wide field objective.
Palabras clave: SUPER-RESOLUTION , DATA DECONVOLUTION , SIGNAL PROCESSING ALGORITHMS , SIGNAL RESOLUTION , IMAGE RESOLUTION
Ver el registro completo
 
Archivos asociados
Tamaño: 3.832Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/117628
DOI: http://dx.doi.org/10.1117/12.2508869
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Toscani, Micaela; Martinez, Sandra Rita; Martínez, Oscar E.; Single image deconvolution with super-resolution using the SUPPOSe algorithm; SPIE; Spie Proceedings; 10884; 2-2019; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES