Mostrar el registro sencillo del ítem

dc.contributor.author
Pollicelli, Débora  
dc.contributor.author
Coscarella, Mariano Alberto  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.date.available
2020-11-02T18:22:17Z  
dc.date.issued
2020-03  
dc.identifier.citation
Pollicelli, Débora; Coscarella, Mariano Alberto; Delrieux, Claudio Augusto; RoI detection and segmentation algorithms for marine mammals photo-identification; Elsevier Science; Ecological Informatics; 56; 3-2020; 1-8  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/117408  
dc.description.abstract
Traditional marine mammal photo-identification is based on recognizing the appearances of the same individuals in pictures taken at different places and times. This task is traditionally performed by Biologists or other Scientists, which may demand a heavy cognitive burden and appreciable processing time searching and selecting information from thousands of pictures. Recently crowdsourcing and citizen science arose as a significant information source of potential scientific use. In particular, the use of non-professional photographs taken by the general public is being leveraged by many scientific projects. This represents an opportunity to enlarge the picture database required in trustable capture-recapture models, but at the same time human-assisted matching becomes unfeasible. Automated image analysis may represent an obvious aid, but applying image analytics to match individuals in large unfiltered datasets may be too slow and full of spurious results. Another strategy may be first to filter out useless images or parts thereof, retaining only the regions of interest (RoIs) in which appears the actual visible portion of the animal to be identified. In this work, we explore and develop a multi-criterion RoI detection for marine mammal pictures taken in the open. Particularly we focus on Commerson's dolphins pictures. Popular RoI detection algorithms, like Haar-wavelet-based methods, are show to perform poorly. For this reason, a convolutional neural network and a multifractal classifier based on color and texture features were developed, achieving significantly better outcomes. The resulting RoIs are much more robust, can be automated, and reduce the further burden of the identification process, either assisted or unassisted.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
CITIZEN SCIENCE  
dc.subject
IMAGE PROCESSING  
dc.subject
MARINE MAMMALS  
dc.subject
OBJECT SEGMENTATION  
dc.subject
PHOTO-IDENTIFICATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
RoI detection and segmentation algorithms for marine mammals photo-identification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-20T19:28:18Z  
dc.journal.volume
56  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pollicelli, Débora. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina  
dc.description.fil
Fil: Coscarella, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ecoinf.2019.101038  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1574954119303486