Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

RoI detection and segmentation algorithms for marine mammals photo-identification

Pollicelli, Débora; Coscarella, Mariano AlbertoIcon ; Delrieux, Claudio AugustoIcon
Fecha de publicación: 03/2020
Editorial: Elsevier Science
Revista: Ecological Informatics
ISSN: 1574-9541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Conservación de la Biodiversidad

Resumen

Traditional marine mammal photo-identification is based on recognizing the appearances of the same individuals in pictures taken at different places and times. This task is traditionally performed by Biologists or other Scientists, which may demand a heavy cognitive burden and appreciable processing time searching and selecting information from thousands of pictures. Recently crowdsourcing and citizen science arose as a significant information source of potential scientific use. In particular, the use of non-professional photographs taken by the general public is being leveraged by many scientific projects. This represents an opportunity to enlarge the picture database required in trustable capture-recapture models, but at the same time human-assisted matching becomes unfeasible. Automated image analysis may represent an obvious aid, but applying image analytics to match individuals in large unfiltered datasets may be too slow and full of spurious results. Another strategy may be first to filter out useless images or parts thereof, retaining only the regions of interest (RoIs) in which appears the actual visible portion of the animal to be identified. In this work, we explore and develop a multi-criterion RoI detection for marine mammal pictures taken in the open. Particularly we focus on Commerson's dolphins pictures. Popular RoI detection algorithms, like Haar-wavelet-based methods, are show to perform poorly. For this reason, a convolutional neural network and a multifractal classifier based on color and texture features were developed, achieving significantly better outcomes. The resulting RoIs are much more robust, can be automated, and reduce the further burden of the identification process, either assisted or unassisted.
Palabras clave: ARTIFICIAL INTELLIGENCE , CITIZEN SCIENCE , IMAGE PROCESSING , MARINE MAMMALS , OBJECT SEGMENTATION , PHOTO-IDENTIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.139Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/117408
DOI: https://doi.org/10.1016/j.ecoinf.2019.101038
URL: https://www.sciencedirect.com/science/article/abs/pii/S1574954119303486
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(CESIMAR)
Articulos de CENTRO PARA EL ESTUDIO DE SISTEMAS MARINOS
Citación
Pollicelli, Débora; Coscarella, Mariano Alberto; Delrieux, Claudio Augusto; RoI detection and segmentation algorithms for marine mammals photo-identification; Elsevier Science; Ecological Informatics; 56; 3-2020; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES