Mostrar el registro sencillo del ítem

dc.contributor.author
Chiappini, Fabricio Alejandro  
dc.contributor.author
Teglia, Carla Mariela  
dc.contributor.author
Forno, Ángela G.  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.date.available
2020-10-31T20:39:07Z  
dc.date.issued
2020-04  
dc.identifier.citation
Chiappini, Fabricio Alejandro; Teglia, Carla Mariela; Forno, Ángela G.; Goicoechea, Hector Casimiro; Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology; Elsevier Science; Talanta; 210; 4-2020; 1-8  
dc.identifier.issn
0039-9140  
dc.identifier.uri
http://hdl.handle.net/11336/117342  
dc.description.abstract
In the last years, regulatory agencies in biopharmaceutical industry have promoted the design and implementation of Process Analytical Technology (PAT), which aims to develop rapid and high-throughput strategies for real-time monitoring of bioprocesses key variables, in order to improve their quality control lines. In this context, spectroscopic techniques for data generation in combination with chemometrics represent alternative analytical methods for on-line critical process variables prediction. In this work, a novel multivariate calibration strategy for the at-line prediction of etanercept, a recombinant protein produced in a mammalian cells-based perfusion process, is presented. For data generation, samples from etanercept processes were daily obtained, from which fluorescence excitation-emission matrices were generated in the spectral ranges of 225.0 and 495.0 nm and 250.0 and 599.5 nm for excitation and emission modes, respectively. These data were correlated with etanercept concentration in supernatant (measured by an off-line HPLC-based reference univariate technique) by implementing different chemometric strategies, in order to build predictive models. Partial least squares (PLS) regression evidenced a non-linear relation between signal and concentration when observing actual vs. predicted concentrations. Hence, a non-parametric approach was implemented, based on a multilayer perceptron artificial neural network (MLP). The MLP topology was optimized by means of the response surface methodology. The prediction performance of MLP model was superior to PLS, since the first is able to cope with non-linearity in calibration models, reaching percentage mean relative error in predictions of about 7.0% (against 12.6% for PLS). This strategy represents a fast and inexpensive approach for etanercept monitoring, which conforms the principles of PAT.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
ETANERCEPT  
dc.subject
FLUORESCENCE SECOND-ORDER DATA  
dc.subject
PAT  
dc.subject
RESPONSE SURFACE METHODOLOGY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-27T17:50:40Z  
dc.journal.volume
210  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chiappini, Fabricio Alejandro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Teglia, Carla Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Forno, Ángela G.. Zelltek S.a.; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Talanta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914019312974  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.talanta.2019.120664