Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology

Chiappini, Fabricio AlejandroIcon ; Teglia, Carla MarielaIcon ; Forno, Ángela G.; Goicoechea, Hector CasimiroIcon
Fecha de publicación: 04/2020
Editorial: Elsevier Science
Revista: Talanta
ISSN: 0039-9140
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In the last years, regulatory agencies in biopharmaceutical industry have promoted the design and implementation of Process Analytical Technology (PAT), which aims to develop rapid and high-throughput strategies for real-time monitoring of bioprocesses key variables, in order to improve their quality control lines. In this context, spectroscopic techniques for data generation in combination with chemometrics represent alternative analytical methods for on-line critical process variables prediction. In this work, a novel multivariate calibration strategy for the at-line prediction of etanercept, a recombinant protein produced in a mammalian cells-based perfusion process, is presented. For data generation, samples from etanercept processes were daily obtained, from which fluorescence excitation-emission matrices were generated in the spectral ranges of 225.0 and 495.0 nm and 250.0 and 599.5 nm for excitation and emission modes, respectively. These data were correlated with etanercept concentration in supernatant (measured by an off-line HPLC-based reference univariate technique) by implementing different chemometric strategies, in order to build predictive models. Partial least squares (PLS) regression evidenced a non-linear relation between signal and concentration when observing actual vs. predicted concentrations. Hence, a non-parametric approach was implemented, based on a multilayer perceptron artificial neural network (MLP). The MLP topology was optimized by means of the response surface methodology. The prediction performance of MLP model was superior to PLS, since the first is able to cope with non-linearity in calibration models, reaching percentage mean relative error in predictions of about 7.0% (against 12.6% for PLS). This strategy represents a fast and inexpensive approach for etanercept monitoring, which conforms the principles of PAT.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , ETANERCEPT , FLUORESCENCE SECOND-ORDER DATA , PAT , RESPONSE SURFACE METHODOLOGY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.139Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/117342
URL: https://www.sciencedirect.com/science/article/pii/S0039914019312974
DOI: http://dx.doi.org/10.1016/j.talanta.2019.120664
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INQUISAL)
Articulos de INST. DE QUIMICA DE SAN LUIS
Citación
Chiappini, Fabricio Alejandro; Teglia, Carla Mariela; Forno, Ángela G.; Goicoechea, Hector Casimiro; Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology; Elsevier Science; Talanta; 210; 4-2020; 1-8
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES