Mostrar el registro sencillo del ítem

dc.contributor.author
Ramirez Pastor, Antonio Jose  
dc.contributor.author
Centres, Paulo Marcelo  
dc.contributor.author
Vogel, Eugenio  
dc.contributor.author
Valdés, J. F.  
dc.date.available
2020-10-28T18:23:18Z  
dc.date.issued
2019-04  
dc.identifier.citation
Ramirez Pastor, Antonio Jose; Centres, Paulo Marcelo; Vogel, Eugenio; Valdés, J. F.; Jamming and percolation for deposition of k2-mers on square lattices: A Monte Carlo simulation study; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 99; 4; 4-2019; 1-11  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/117074  
dc.description.abstract
Percolation and jamming of k×k square tiles (k2-mers) deposited on square lattices have been studied by numerical simulations complemented with finite-size scaling theory and exact enumeration of configurations for small systems. The k2-mers were irreversibly deposited into square lattices of sizes L×L with L/k ranging between 128 and 448 (64 and 224) for jamming (percolation) calculations. Jamming coverage θj,k was determined for a wide range of k values (2≤k≤100 with many intermediate k values to allow a fine scaling analysis). θj,k exhibits a decreasing behavior with increasing k, being θj,k= 0.5623(3) the limit value for large k2-mer sizes. In addition, a finite-size scaling analysis of the jamming transition was carried out, and the corresponding spatial correlation length critical exponent νj was measured, being νj≈1. On the other hand, the obtained results for the percolation threshold θc,k showed that θc,k is an increasing function of k in the range 1≤k≤3. For k≥4, all jammed configurations are nonpercolating states and, consequently, the percolation phase transition disappears. An explanation for this phenomenon is offered in terms of the rapid increase with k of the number of surrounding occupied sites needed to reach percolation, which gets larger than the sufficient number of occupied sites to define jamming. In the case of k=2 and 3, the percolation thresholds are θc,k=2(-)=0.60355(8) and θc,k=3=0.63110(9). Our results significantly improve the previously reported values of θc,k=2Naka=0.601(7) and θc,k=3Naka=0.621(6) [Nakamura, Phys. Rev. A 36, 2384 (1987)0556-279110.1103/PhysRevA.36.2384]. In parallel, a comparison with previous results for jamming on these systems is also done. Finally, a complete analysis of critical exponents and universality has been done, showing that the percolation phase transition involved in the system has the same universality class as the ordinary random percolation, regardless of the size k considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
PERCOLATION  
dc.subject
MONTE CARLO  
dc.subject
SQUARE LATTICES  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Jamming and percolation for deposition of k2-mers on square lattices: A Monte Carlo simulation study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-22T15:41:22Z  
dc.journal.volume
99  
dc.journal.number
4  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina  
dc.description.fil
Fil: Vogel, Eugenio. Universidad de La Frontera; Chile. Centro, el Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile  
dc.description.fil
Fil: Valdés, J. F.. Universidad de La Frontera; Chile  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.99.042131  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.042131  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.11438