Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Jamming and percolation for deposition of k2-mers on square lattices: A Monte Carlo simulation study

Ramirez Pastor, Antonio JoseIcon ; Centres, Paulo MarceloIcon ; Vogel, Eugenio; Valdés, J. F.
Fecha de publicación: 04/2019
Editorial: American Physical Society
Revista: Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN: 1539-3755
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

Percolation and jamming of k×k square tiles (k2-mers) deposited on square lattices have been studied by numerical simulations complemented with finite-size scaling theory and exact enumeration of configurations for small systems. The k2-mers were irreversibly deposited into square lattices of sizes L×L with L/k ranging between 128 and 448 (64 and 224) for jamming (percolation) calculations. Jamming coverage θj,k was determined for a wide range of k values (2≤k≤100 with many intermediate k values to allow a fine scaling analysis). θj,k exhibits a decreasing behavior with increasing k, being θj,k= 0.5623(3) the limit value for large k2-mer sizes. In addition, a finite-size scaling analysis of the jamming transition was carried out, and the corresponding spatial correlation length critical exponent νj was measured, being νj≈1. On the other hand, the obtained results for the percolation threshold θc,k showed that θc,k is an increasing function of k in the range 1≤k≤3. For k≥4, all jammed configurations are nonpercolating states and, consequently, the percolation phase transition disappears. An explanation for this phenomenon is offered in terms of the rapid increase with k of the number of surrounding occupied sites needed to reach percolation, which gets larger than the sufficient number of occupied sites to define jamming. In the case of k=2 and 3, the percolation thresholds are θc,k=2(-)=0.60355(8) and θc,k=3=0.63110(9). Our results significantly improve the previously reported values of θc,k=2Naka=0.601(7) and θc,k=3Naka=0.621(6) [Nakamura, Phys. Rev. A 36, 2384 (1987)0556-279110.1103/PhysRevA.36.2384]. In parallel, a comparison with previous results for jamming on these systems is also done. Finally, a complete analysis of critical exponents and universality has been done, showing that the percolation phase transition involved in the system has the same universality class as the ordinary random percolation, regardless of the size k considered.
Palabras clave: PERCOLATION , MONTE CARLO , SQUARE LATTICES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 448.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/117074
DOI: http://dx.doi.org/10.1103/PhysRevE.99.042131
URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.042131
URL: https://arxiv.org/abs/1905.11438
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Ramirez Pastor, Antonio Jose; Centres, Paulo Marcelo; Vogel, Eugenio; Valdés, J. F.; Jamming and percolation for deposition of k2-mers on square lattices: A Monte Carlo simulation study; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 99; 4; 4-2019; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES