Mostrar el registro sencillo del ítem

dc.contributor.author
Armentano, Marcelo Gabriel  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Amandi, Analia Adriana  
dc.date.available
2015-07-10T20:14:51Z  
dc.date.issued
2013-08  
dc.identifier.citation
Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana; Followee recommendation based on text analysis of micro-blogging activity; Pergamon-Elsevier Science Ltd; Information Systems; 38; 8; 8-2013; 1116-1127  
dc.identifier.issn
0306-4379  
dc.identifier.uri
http://hdl.handle.net/11336/1169  
dc.description.abstract
Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MICRO-BLOGGING  
dc.subject
RECOMMENDER SYSTEMS  
dc.subject
TEXT MINING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Followee recommendation based on text analysis of micro-blogging activity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
38  
dc.journal.number
8  
dc.journal.pagination
1116-1127  
dc.journal.pais
Estados Unidos  
dc.conicet.avisoEditorial
Authors pre-print on any website,  
dc.description.fil
Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Information Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.is.2013.05.009