Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Followee recommendation based on text analysis of micro-blogging activity

Armentano, Marcelo GabrielIcon ; Godoy, Daniela LisIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 08/2013
Editorial: Pergamon-Elsevier Science Ltd
Revista: Information Systems
ISSN: 0306-4379
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium, have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users´ interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.
Palabras clave: MICRO-BLOGGING , RECOMMENDER SYSTEMS , TEXT MINING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 352.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/1169
DOI: http://dx.doi.org/10.1016/j.is.2013.05.009
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Armentano, Marcelo Gabriel; Godoy, Daniela Lis; Amandi, Analia Adriana; Followee recommendation based on text analysis of micro-blogging activity; Pergamon-Elsevier Science Ltd; Information Systems; 38; 8; 8-2013; 1116-1127
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES