Mostrar el registro sencillo del ítem

dc.contributor.author
Olson, Dustin  
dc.contributor.author
Boscoboinik, Alejandro Miguel  
dc.contributor.author
Manzi, Sergio Javier  
dc.contributor.author
Tysoe, Wilfred T.  
dc.date.available
2020-10-27T18:32:37Z  
dc.date.issued
2019-04  
dc.identifier.citation
Olson, Dustin; Boscoboinik, Alejandro Miguel; Manzi, Sergio Javier; Tysoe, Wilfred T.; Chemical Self-Assembly Strategies for Designing Molecular Electronic Circuits: Demonstration of Concept; American Chemical Society; Journal of Physical Chemistry C; 123; 16; 4-2019; 10398-10405  
dc.identifier.issn
1932-7447  
dc.identifier.uri
http://hdl.handle.net/11336/116959  
dc.description.abstract
The design of molecular electronic circuits will require the development of strategies for making controlled interconnections between nanoelectrodes. The simplest example of a molecular electronic component consists of aryl rings with para-anchoring functionalities, commonly isocyanide or thiol groups. In particular, 1,4-phenylene diisocyanobenzene (1,4-PDI) has been shown to form conductive one-dimensional, oligomeric chains that are composed of alternating gold and 1,4-PDI units in which a gold adatom is linked to two trans isocyanide groups. Density functional theory (DFT) calculations of the oligomerization pathway reveal that growth occurs via a vertical, mobile Au-PDI adatom complex that forms by binding to the gold substrate and oligomerizes by the gold adatom attaching to the isocyanide terminus of a growing chain. In this case, the gold atoms in the oligomer derive from the gold substrate. In principle, bridging between adjacent electrodes could be tuned by controlling the 1,4-PDI dose. However, because both nucleation of the adatom complex and the subsequent oligomerization reactions occur at the periphery of gold nanoparticles, it is postulated that oligomer growth is inherently self-limiting. An analytical model is developed for this process that demonstrates the existence of self-limiting growth. This is modeled in greater detail using kinetic Monte Carlo simulations with the energy parameters derived from DFT calculation on gold that confirm that the growth is self-limiting and predicts that bridging between nanoelectrodes should only occur for spacings less than 12 nm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Chemical Self-Assembly  
dc.subject
Molecular Electronic Circuits  
dc.subject
MONTE CARLO SIMULATIONS  
dc.subject
nanoelectrodes  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Chemical Self-Assembly Strategies for Designing Molecular Electronic Circuits: Demonstration of Concept  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-22T15:41:01Z  
dc.journal.volume
123  
dc.journal.number
16  
dc.journal.pagination
10398-10405  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Olson, Dustin. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Boscoboinik, Alejandro Miguel. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Manzi, Sergio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Fisico Matematicas y Naturales. Departamento de Fisica. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina  
dc.description.fil
Fil: Tysoe, Wilfred T.. University of Wisconsin; Estados Unidos  
dc.journal.title
Journal of Physical Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcc.9b00666  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00666