Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Chemical Self-Assembly Strategies for Designing Molecular Electronic Circuits: Demonstration of Concept

Olson, Dustin; Boscoboinik, Alejandro MiguelIcon ; Manzi, Sergio JavierIcon ; Tysoe, Wilfred T.
Fecha de publicación: 04/2019
Editorial: American Chemical Society
Revista: Journal of Physical Chemistry C
ISSN: 1932-7447
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

The design of molecular electronic circuits will require the development of strategies for making controlled interconnections between nanoelectrodes. The simplest example of a molecular electronic component consists of aryl rings with para-anchoring functionalities, commonly isocyanide or thiol groups. In particular, 1,4-phenylene diisocyanobenzene (1,4-PDI) has been shown to form conductive one-dimensional, oligomeric chains that are composed of alternating gold and 1,4-PDI units in which a gold adatom is linked to two trans isocyanide groups. Density functional theory (DFT) calculations of the oligomerization pathway reveal that growth occurs via a vertical, mobile Au-PDI adatom complex that forms by binding to the gold substrate and oligomerizes by the gold adatom attaching to the isocyanide terminus of a growing chain. In this case, the gold atoms in the oligomer derive from the gold substrate. In principle, bridging between adjacent electrodes could be tuned by controlling the 1,4-PDI dose. However, because both nucleation of the adatom complex and the subsequent oligomerization reactions occur at the periphery of gold nanoparticles, it is postulated that oligomer growth is inherently self-limiting. An analytical model is developed for this process that demonstrates the existence of self-limiting growth. This is modeled in greater detail using kinetic Monte Carlo simulations with the energy parameters derived from DFT calculation on gold that confirm that the growth is self-limiting and predicts that bridging between nanoelectrodes should only occur for spacings less than 12 nm.
Palabras clave: Chemical Self-Assembly , Molecular Electronic Circuits , MONTE CARLO SIMULATIONS , nanoelectrodes
Ver el registro completo
 
Archivos asociados
Tamaño: 4.223Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/116959
DOI: http://dx.doi.org/10.1021/acs.jpcc.9b00666
URL: https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00666
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Olson, Dustin; Boscoboinik, Alejandro Miguel; Manzi, Sergio Javier; Tysoe, Wilfred T.; Chemical Self-Assembly Strategies for Designing Molecular Electronic Circuits: Demonstration of Concept; American Chemical Society; Journal of Physical Chemistry C; 123; 16; 4-2019; 10398-10405
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES