Mostrar el registro sencillo del ítem

dc.contributor.author
Aldroubi, Akram  
dc.contributor.author
Cabrelli, Carlos  
dc.contributor.author
Molter, Ursula Maria  
dc.contributor.other
Heil, Christopher  
dc.date.available
2020-10-27T16:52:10Z  
dc.date.issued
2006  
dc.identifier.citation
Aldroubi, Akram; Cabrelli, Carlos; Molter, Ursula Maria; Learning the Right Model from the Data; Birkhäuser; 2006; 325-333  
dc.identifier.isbn
978-0-8176-4504-5  
dc.identifier.uri
http://hdl.handle.net/11336/116945  
dc.description.abstract
Summary. In this chapter we discuss the problem of finding the shift-invariant space model that best fits a given class of observed data F. If the data is known to belong to a fixed—but unknown—shift-invariant space V (Φ) generated by a vector function Φ, then we can probe the data F to find out whether the data is sufficiently rich for determining the shift-invariant space. If it is determined that the data is not sufficient to find the underlying shift-invariant space V , then we need to acquire more data. If we cannot acquire more data, then instead we can determine a shiftinvariant subspace S ⊂ V whose elements are generated by the data. For the case where the observed data is corrupted by noise, or the data does not belong to a shift-invariant space V (Φ), then we can determine a space V (Φ) that fits the data in some optimal way. This latter case is more realistic and can be useful in applications, e.g., finding a shift-invariant space with a small number of generators that describes the class of chest X-rays.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhäuser  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ORTHONORMAL BASIS  
dc.subject
SPACE VERSUS  
dc.subject
CLASS VERSUS  
dc.subject
RIESZ BASIS  
dc.subject
OPTIMAL SPACE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning the Right Model from the Data  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-09-03T19:01:08Z  
dc.journal.pagination
325-333  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boston  
dc.description.fil
Fil: Aldroubi, Akram. Vanderbilt University; Estados Unidos  
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F0-8176-4504-7_14  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/0-8176-4504-7_14  
dc.conicet.paginas
450  
dc.source.titulo
Harmonic Analysis and Applications