Capítulo de Libro
Learning the Right Model from the Data
Título del libro: Harmonic Analysis and Applications
Fecha de publicación:
2006
Editorial:
Birkhäuser
ISBN:
978-0-8176-4504-5
Idioma:
Inglés
Clasificación temática:
Resumen
Summary. In this chapter we discuss the problem of finding the shift-invariant space model that best fits a given class of observed data F. If the data is known to belong to a fixed—but unknown—shift-invariant space V (Φ) generated by a vector function Φ, then we can probe the data F to find out whether the data is sufficiently rich for determining the shift-invariant space. If it is determined that the data is not sufficient to find the underlying shift-invariant space V , then we need to acquire more data. If we cannot acquire more data, then instead we can determine a shiftinvariant subspace S ⊂ V whose elements are generated by the data. For the case where the observed data is corrupted by noise, or the data does not belong to a shift-invariant space V (Φ), then we can determine a space V (Φ) that fits the data in some optimal way. This latter case is more realistic and can be useful in applications, e.g., finding a shift-invariant space with a small number of generators that describes the class of chest X-rays.
Palabras clave:
ORTHONORMAL BASIS
,
SPACE VERSUS
,
CLASS VERSUS
,
RIESZ BASIS
,
OPTIMAL SPACE
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(IMAS)
Capítulos de libros de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Capítulos de libros de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Aldroubi, Akram; Cabrelli, Carlos; Molter, Ursula Maria; Learning the Right Model from the Data; Birkhäuser; 2006; 325-333
Compartir
Altmétricas