Mostrar el registro sencillo del ítem

dc.contributor.author
Caspari, Eva  
dc.contributor.author
Novikov, Mikhail  
dc.contributor.author
Lisitsa, Vadim  
dc.contributor.author
Barbosa, Nicolas Daniel  
dc.contributor.author
Quintal, Beatriz  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Holliger, Klaus  
dc.date.available
2020-10-23T20:37:13Z  
dc.date.issued
2019-05  
dc.identifier.citation
Caspari, Eva; Novikov, Mikhail; Lisitsa, Vadim; Barbosa, Nicolas Daniel; Quintal, Beatriz; et al.; Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study; Wiley Blackwell Publishing, Inc; Geophysical Prospecting; 67; 4; 5-2019; 935-955  
dc.identifier.issn
0016-8025  
dc.identifier.uri
http://hdl.handle.net/11336/116771  
dc.description.abstract
Seismic attenuation mechanisms receive increasing attention for the characterization of fractured formations because of their inherent sensitivity to the hydraulic and elastic properties of the probed media. Attenuation has been successfully inferred from seismic data in the past, but linking these estimates to intrinsic rock physical properties remains challenging. A reason for these difficulties in fluid-saturated fractured porous media is that several mechanisms can cause attenuation and may interfere with each other. These mechanisms notably comprise pressure diffusion phenomena and dynamic effects, such as scattering, as well as Biot's so-called intrinsic attenuation mechanism. Understanding the interplay between these mechanisms is therefore an essential step for estimating fracture properties from seismic measurements. In order to do this, we perform a comparative study involving wave propagation modelling in a transmission set-up based on Biot's low-frequency dynamic equations and numerical upscaling based on Biot's consolidation equations. The former captures all aforementioned attenuation mechanisms and their interference, whereas the latter only accounts for pressure diffusion phenomena. A comparison of the results from both methods therefore allows to distinguish between dynamic and pressure diffusion phenomena and to shed light on their interference. To this end, we consider a range of canonical models with randomly distributed vertical and/or horizontal fractures. We observe that scattering attenuation strongly interferes with pressure diffusion phenomena, since the latter affect the elastic contrasts between fractures and their embedding background. Our results also demonstrate that it is essential to account for amplitude reductions due to transmission losses to allow for an adequate estimation of the intrinsic attenuation of fractured media. The effects of Biot's intrinsic mechanism are rather small for the models considered in this study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ATTENUATION  
dc.subject
FRACTURES  
dc.subject
SCATTERING  
dc.subject
PRESSURE DIFFUSION  
dc.subject
POROELASTICITY  
dc.subject
WAVE PROPAGATION MODELLING  
dc.subject
NUMERICAL UPSCALING  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-10-07T13:57:50Z  
dc.journal.volume
67  
dc.journal.number
4  
dc.journal.pagination
935-955  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Novikov, Mikhail. Novosibirsk State University; Rusia  
dc.description.fil
Fil: Lisitsa, Vadim. Novosibirsk State University; Rusia  
dc.description.fil
Fil: Barbosa, Nicolas Daniel. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Quintal, Beatriz. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Holliger, Klaus. Universite de Lausanne; Suiza  
dc.journal.title
Geophysical Prospecting  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12667  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/1365-2478.12667