Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study

Caspari, Eva; Novikov, Mikhail; Lisitsa, Vadim; Barbosa, Nicolas Daniel; Quintal, Beatriz; Rubino, Jorge GermanIcon ; Holliger, Klaus
Fecha de publicación: 05/2019
Editorial: Wiley Blackwell Publishing, Inc
Revista: Geophysical Prospecting
ISSN: 0016-8025
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geoquímica y Geofísica

Resumen

Seismic attenuation mechanisms receive increasing attention for the characterization of fractured formations because of their inherent sensitivity to the hydraulic and elastic properties of the probed media. Attenuation has been successfully inferred from seismic data in the past, but linking these estimates to intrinsic rock physical properties remains challenging. A reason for these difficulties in fluid-saturated fractured porous media is that several mechanisms can cause attenuation and may interfere with each other. These mechanisms notably comprise pressure diffusion phenomena and dynamic effects, such as scattering, as well as Biot's so-called intrinsic attenuation mechanism. Understanding the interplay between these mechanisms is therefore an essential step for estimating fracture properties from seismic measurements. In order to do this, we perform a comparative study involving wave propagation modelling in a transmission set-up based on Biot's low-frequency dynamic equations and numerical upscaling based on Biot's consolidation equations. The former captures all aforementioned attenuation mechanisms and their interference, whereas the latter only accounts for pressure diffusion phenomena. A comparison of the results from both methods therefore allows to distinguish between dynamic and pressure diffusion phenomena and to shed light on their interference. To this end, we consider a range of canonical models with randomly distributed vertical and/or horizontal fractures. We observe that scattering attenuation strongly interferes with pressure diffusion phenomena, since the latter affect the elastic contrasts between fractures and their embedding background. Our results also demonstrate that it is essential to account for amplitude reductions due to transmission losses to allow for an adequate estimation of the intrinsic attenuation of fractured media. The effects of Biot's intrinsic mechanism are rather small for the models considered in this study.
Palabras clave: ATTENUATION , FRACTURES , SCATTERING , PRESSURE DIFFUSION , POROELASTICITY , WAVE PROPAGATION MODELLING , NUMERICAL UPSCALING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.999Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/116771
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12667
DOI: http://dx.doi.org/10.1111/1365-2478.12667
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Caspari, Eva; Novikov, Mikhail; Lisitsa, Vadim; Barbosa, Nicolas Daniel; Quintal, Beatriz; et al.; Attenuation mechanisms in fractured fluid-saturated porous rocks: a numerical modelling study; Wiley Blackwell Publishing, Inc; Geophysical Prospecting; 67; 4; 5-2019; 935-955
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES