Mostrar el registro sencillo del ítem

dc.contributor.author
Durand, Guillermo Andrés  
dc.contributor.author
Blanco, Anibal Manuel  
dc.contributor.author
Sanchez, Mabel Cristina  
dc.contributor.author
Bandoni, Jose Alberto  
dc.contributor.other
Rangaiah, Gade Pandu  
dc.date.available
2020-10-15T20:13:31Z  
dc.date.issued
2010  
dc.identifier.citation
Durand, Guillermo Andrés; Blanco, Anibal Manuel; Sanchez, Mabel Cristina; Bandoni, Jose Alberto; Hybrid approach for constraint handling in MINLP optimization; World Scientific Publishing Co. Pte. Ltd.; 2; 2010; 353-374  
dc.identifier.isbn
978-981-4299-20-6  
dc.identifier.uri
http://hdl.handle.net/11336/115997  
dc.description.abstract
Abstract. Stochastic techniques have demonstrated rewarding performance in global optimization of highly multimodal unconstrained models. However, the formulation of a general framework for constraint handling in stochastic optimization is still an open issue. In this work a novel approach to address MINLP models is proposed whose rationale is to convert the constraint verification issue into the identification of the local optima of an unconstrained model. For this purpose the optimality conditions of the original problem, namely its Karush-Kuhn-Tucker system, are solved as an unconstrained optimization model, which minimizes the sum of the equation residuals. The resulting multi-modal unconstrained problem can be efficiently addressed with standard stochastic algorithms. In particular, a sequential niche strategy, which makes use of a genetic algorithm, is adopted in this work to solve the problem. The proposed approach combines the strengths of the deterministic optimality theory together with the ability of stochastic techniques as function optimizers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific Publishing Co. Pte. Ltd.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MIXED INTEGER NON LINEAR OPTIMIZATION  
dc.subject
GENETIC ALGORITHMS  
dc.subject
DETERMINISTIC ALGORITHMS  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Hybrid approach for constraint handling in MINLP optimization  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-08-18T15:00:45Z  
dc.journal.volume
2  
dc.journal.pagination
353-374  
dc.journal.pais
Singapur  
dc.journal.ciudad
Singapur  
dc.description.fil
Fil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1142/9789814299213_0011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/9789814299213_0011  
dc.conicet.paginas
709  
dc.source.titulo
Advances in process system engineering: Stochastic global optimization. Techniques and applications in chemical engineering