Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Hybrid approach for constraint handling in MINLP optimization

Título del libro: Advances in process system engineering: Stochastic global optimization. Techniques and applications in chemical engineering

Durand, Guillermo AndrésIcon ; Blanco, Anibal ManuelIcon ; Sanchez, Mabel CristinaIcon ; Bandoni, Jose AlbertoIcon
Otros responsables: Rangaiah, Gade Pandu
Fecha de publicación: 2010
Editorial: World Scientific Publishing Co. Pte. Ltd.
ISBN: 978-981-4299-20-6
Idioma: Inglés
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Abstract. Stochastic techniques have demonstrated rewarding performance in global optimization of highly multimodal unconstrained models. However, the formulation of a general framework for constraint handling in stochastic optimization is still an open issue. In this work a novel approach to address MINLP models is proposed whose rationale is to convert the constraint verification issue into the identification of the local optima of an unconstrained model. For this purpose the optimality conditions of the original problem, namely its Karush-Kuhn-Tucker system, are solved as an unconstrained optimization model, which minimizes the sum of the equation residuals. The resulting multi-modal unconstrained problem can be efficiently addressed with standard stochastic algorithms. In particular, a sequential niche strategy, which makes use of a genetic algorithm, is adopted in this work to solve the problem. The proposed approach combines the strengths of the deterministic optimality theory together with the ability of stochastic techniques as function optimizers.
Palabras clave: MIXED INTEGER NON LINEAR OPTIMIZATION , GENETIC ALGORITHMS , DETERMINISTIC ALGORITHMS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.229Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/115997
DOI: https://doi.org/10.1142/9789814299213_0011
URL: https://www.worldscientific.com/doi/abs/10.1142/9789814299213_0011
Colecciones
Capítulos de libros(PLAPIQUI)
Capítulos de libros de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Durand, Guillermo Andrés; Blanco, Anibal Manuel; Sanchez, Mabel Cristina; Bandoni, Jose Alberto; Hybrid approach for constraint handling in MINLP optimization; World Scientific Publishing Co. Pte. Ltd.; 2; 2010; 353-374
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES