Mostrar el registro sencillo del ítem
dc.contributor.author
Bianchi, Bruno
dc.contributor.author
Shalóm, Diego Edgar
dc.contributor.author
Kamienkowski, Juan Esteban
dc.date.available
2020-10-01T13:18:24Z
dc.date.issued
2019-02
dc.identifier.citation
Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban; Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models; Frontiers Research Foundation; Frontiers In Human Neuroscience; 13; 82; 2-2019; 1-11
dc.identifier.issn
1662-5161
dc.identifier.uri
http://hdl.handle.net/11336/115232
dc.description.abstract
Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Research Foundation
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTER-BASED PERMUTATION TEST
dc.subject
ELECTROENCEPHALOGRAPHY
dc.subject
LINEAR MIXED MODELS
dc.subject
N400
dc.subject
PREDICTABILITY
dc.subject
READING
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-08T18:56:36Z
dc.journal.volume
13
dc.journal.number
82
dc.journal.pagination
1-11
dc.journal.pais
Suiza
dc.description.fil
Fil: Bianchi, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Shalóm, Diego Edgar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.journal.title
Frontiers In Human Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fnhum.2019.00082/full
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fnhum.2019.00082
Archivos asociados