Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models

Bianchi, BrunoIcon ; Shalóm, Diego EdgarIcon ; Kamienkowski, Juan EstebanIcon
Fecha de publicación: 02/2019
Editorial: Frontiers Research Foundation
Revista: Frontiers In Human Neuroscience
ISSN: 1662-5161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Predictions of future events play an important role in daily activities, such as visual search, listening, or reading. They allow us to plan future actions and to anticipate their outcomes. Reading, a natural, commonly studied behavior, could shed light over the brain processes that underlie those prediction mechanisms. We hypothesized that different mechanisms must lead predictions along common sentences and proverbs. The former ones are more based on semantic and syntactic cues, and the last ones are almost purely based on long-term memory. Here we show that the modulation of the N400 by Cloze-Task Predictability is strongly present in common sentences, but not in proverbs. Moreover, we present a novel combination of linear mixed models to account for multiple variables, and a cluster-based permutation procedure to control for multiple comparisons. Our results suggest that different prediction mechanisms are present during reading.
Palabras clave: CLUSTER-BASED PERMUTATION TEST , ELECTROENCEPHALOGRAPHY , LINEAR MIXED MODELS , N400 , PREDICTABILITY , READING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.213Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/115232
URL: https://www.frontiersin.org/article/10.3389/fnhum.2019.00082/full
DOI: http://dx.doi.org/10.3389/fnhum.2019.00082
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bianchi, Bruno; Shalóm, Diego Edgar; Kamienkowski, Juan Esteban; Predicting Known Sentences: Neural Basis of Proverb Reading Using Non-parametric Statistical Testing and Mixed-Effects Models; Frontiers Research Foundation; Frontiers In Human Neuroscience; 13; 82; 2-2019; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES