Mostrar el registro sencillo del ítem

dc.contributor.author
Cantizano, Natalí Ailín  
dc.contributor.author
Silva, Analia  
dc.date.available
2020-09-07T21:56:01Z  
dc.date.issued
2019-01  
dc.identifier.citation
Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/113444  
dc.description.abstract
The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CONCENTRATION COMPACTNESS  
dc.subject
CRITICAL EXPONENTS  
dc.subject
NON-LOCAL  
dc.subject
SOBOLEV EMBEDDING  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Three solutions for a nonlocal problem with critical growth  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-09-01T19:11:36Z  
dc.journal.volume
469  
dc.journal.number
2  
dc.journal.pagination
841-851  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.description.fil
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2018.09.038  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X1830787X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1804.10699