Artículo
Three solutions for a nonlocal problem with critical growth
Fecha de publicación:
01/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].
Palabras clave:
CONCENTRATION COMPACTNESS
,
CRITICAL EXPONENTS
,
NON-LOCAL
,
SOBOLEV EMBEDDING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851
Compartir
Altmétricas