Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Rodriguez, Daniela Andrea  
dc.contributor.author
Vena, Pablo Claudio  
dc.date.available
2020-09-04T15:24:14Z  
dc.date.issued
2019-02  
dc.identifier.citation
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36  
dc.identifier.issn
1133-0686  
dc.identifier.uri
http://hdl.handle.net/11336/113242  
dc.description.abstract
In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
B-SPLINES  
dc.subject
DEVIANCE  
dc.subject
ISOTONIC REGRESSION  
dc.subject
PARTIAL LINEAR MODELS  
dc.subject
ROBUST ESTIMATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimators in a generalized partly linear regression model under monotony constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-08T18:55:46Z  
dc.journal.volume
29  
dc.journal.number
1  
dc.journal.pagination
1-36  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Vena, Pablo Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Test  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-019-00629-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s11749-019-00629-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1802.07998