Artículo
Robust estimators in a generalized partly linear regression model under monotony constraints
Fecha de publicación:
02/2019
Editorial:
Springer
Revista:
Test
ISSN:
1133-0686
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log-Gamma regression model. Under regularity conditions, we derive consistency results for the nonparametric function estimators as well as consistency and asymptotic distribution results for the regression parameter estimators. Besides, the empirical influence function allows us to study the sensitivity of the estimators to anomalous observations. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log-Gamma regression model with increasing nonparametric component. The proposal is illustrated on a real data set.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Boente Boente, Graciela Lina; Rodriguez, Daniela Andrea; Vena, Pablo Claudio; Robust estimators in a generalized partly linear regression model under monotony constraints; Springer; Test; 29; 1; 2-2019; 1-36
Compartir
Altmétricas