Mostrar el registro sencillo del ítem

dc.contributor.author
Panzone, Pablo Andres  
dc.date.available
2020-08-31T21:38:10Z  
dc.date.issued
2018-10  
dc.identifier.citation
Panzone, Pablo Andres; On the roots of the Rogers-Ramanujan function; Rocky Mountain Mathematics Consortium; Rocky Mountain Journal Of Mathematics; 48; 8; 10-2018; 2653-2660  
dc.identifier.issn
0035-7596  
dc.identifier.uri
http://hdl.handle.net/11336/112853  
dc.description.abstract
We give simple proofs of the fact that, for certain parameters, the roots of the generalized Rogers-Ramanujan function are irrational numbers and, for example, that at least one of the following two numbers is irrational: {∑∞n=1Fn/(mn∏n−1i=0ϕ(k+i)),∑∞n=1Fn/(mn∏n−1i=0 ϕ(k+i+1))}, where Fn+2=Fn+1+Fn, F0=0,F1=1 (the Fibonacci sequence), m is a natural number >(1+5–√)/2 and ϕ(k) is any function taking positive integer values such that lim supk→∞ϕ(k)=∞.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Rocky Mountain Mathematics Consortium  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IRRATIONALITY  
dc.subject
ROGERS-RAMANUJAN  
dc.subject
UNS-INMABB-CONICET  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the roots of the Rogers-Ramanujan function  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-07-27T14:04:26Z  
dc.journal.volume
48  
dc.journal.number
8  
dc.journal.pagination
2653-2660  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Rocky Mountain Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.rmjm/1546138825  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1216/RMJ-2018-48-8-2653