Artículo
On the roots of the Rogers-Ramanujan function
Fecha de publicación:
10/2018
Editorial:
Rocky Mountain Mathematics Consortium
Revista:
Rocky Mountain Journal Of Mathematics
ISSN:
0035-7596
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give simple proofs of the fact that, for certain parameters, the roots of the generalized Rogers-Ramanujan function are irrational numbers and, for example, that at least one of the following two numbers is irrational: {∑∞n=1Fn/(mn∏n−1i=0ϕ(k+i)),∑∞n=1Fn/(mn∏n−1i=0 ϕ(k+i+1))}, where Fn+2=Fn+1+Fn, F0=0,F1=1 (the Fibonacci sequence), m is a natural number >(1+5–√)/2 and ϕ(k) is any function taking positive integer values such that lim supk→∞ϕ(k)=∞.
Palabras clave:
IRRATIONALITY
,
ROGERS-RAMANUJAN
,
UNS-INMABB-CONICET
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Panzone, Pablo Andres; On the roots of the Rogers-Ramanujan function; Rocky Mountain Mathematics Consortium; Rocky Mountain Journal Of Mathematics; 48; 8; 10-2018; 2653-2660
Compartir
Altmétricas