Mostrar el registro sencillo del ítem
dc.contributor.author
Aguate, Fernando Matíass
dc.contributor.author
Crossa, José
dc.contributor.author
Balzarini, Monica Graciela
dc.date.available
2020-08-31T14:09:18Z
dc.date.issued
2019-03
dc.identifier.citation
Aguate, Fernando Matíass; Crossa, José; Balzarini, Monica Graciela; Effect of missing values on variance component estimates in multienvironment trials; Crop Science Society of America; Crop Science; 59; 2; 3-2019; 508-517
dc.identifier.issn
0011-183X
dc.identifier.uri
http://hdl.handle.net/11336/112713
dc.description.abstract
Multienvironment trials (METs) are conducted to evaluate cultivars across locations and years with often incomplete data structure due to annual cultivar replacements. The imbalance could cause biased variance component (VC) estimates depending on data dimension, proportion of missing values, and the cultivar dropout mechanism. The objective of this study was to quantify the bias of VC estimates obtained from imbalanced datasets. We performed simulations of METs with different data dimensions (number of cultivars, locations, and years) using VC parameters taken from real wheat (Triticum aestivum L.) METs. The missing values were generated by annually dropping and replacing cultivars. The genotypic variance estimates obtained from analyses of 2 yr of METs, and >40% missing values, were overestimated in all simulated scenarios. The percentage of bias was highly influenced by the number of years considered for analysis. Variance component estimates from simulations with more years of METs were less biased: 8-yr analyses produced <5% bias in the genotypic variance and its interactions, even in highly imbalanced datasets. Increasing the number of annually tested cultivars or the number of locations was less beneficial in terms of decreasing bias than increasing the number of years. Cultivar-mean repeatability was considerably affected by increases in the percentage of missing values, which caused reductions of up to 60% with few years of METs. Results showed that, even with cultivar replacement, linear mixed models can estimate VCs with <5% bias when there are four or more years of METs, with or without imbalance (up to 40%).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Crop Science Society of America
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BEST LINEAR UNBIASED PREDICTION
dc.subject
MULTIENVIRONMENT TRIAL
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Effect of missing values on variance component estimates in multienvironment trials
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-20T20:28:35Z
dc.identifier.eissn
1435-0653
dc.journal.volume
59
dc.journal.number
2
dc.journal.pagination
508-517
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Baltimore
dc.description.fil
Fil: Aguate, Fernando Matíass. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural; Argentina. Comisión Nacional de Investigación Científica y Tecnológica; Chile
dc.description.fil
Fil: Crossa, José. Centro Internacional de Mejoramiento de Maiz y Trigo; México
dc.description.fil
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
dc.journal.title
Crop Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2135/cropsci2018.03.0209
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2018.03.0209
Archivos asociados