Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Effect of missing values on variance component estimates in multienvironment trials

Aguate, Fernando Matíass; Crossa, José; Balzarini, Monica GracielaIcon
Fecha de publicación: 03/2019
Editorial: Crop Science Society of America
Revista: Crop Science
ISSN: 0011-183X
e-ISSN: 1435-0653
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

Multienvironment trials (METs) are conducted to evaluate cultivars across locations and years with often incomplete data structure due to annual cultivar replacements. The imbalance could cause biased variance component (VC) estimates depending on data dimension, proportion of missing values, and the cultivar dropout mechanism. The objective of this study was to quantify the bias of VC estimates obtained from imbalanced datasets. We performed simulations of METs with different data dimensions (number of cultivars, locations, and years) using VC parameters taken from real wheat (Triticum aestivum L.) METs. The missing values were generated by annually dropping and replacing cultivars. The genotypic variance estimates obtained from analyses of 2 yr of METs, and >40% missing values, were overestimated in all simulated scenarios. The percentage of bias was highly influenced by the number of years considered for analysis. Variance component estimates from simulations with more years of METs were less biased: 8-yr analyses produced <5% bias in the genotypic variance and its interactions, even in highly imbalanced datasets. Increasing the number of annually tested cultivars or the number of locations was less beneficial in terms of decreasing bias than increasing the number of years. Cultivar-mean repeatability was considerably affected by increases in the percentage of missing values, which caused reductions of up to 60% with few years of METs. Results showed that, even with cultivar replacement, linear mixed models can estimate VCs with <5% bias when there are four or more years of METs, with or without imbalance (up to 40%).
Palabras clave: BEST LINEAR UNBIASED PREDICTION , MULTIENVIRONMENT TRIAL
Ver el registro completo
 
Archivos asociados
Tamaño: 2.052Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/112713
DOI: http://dx.doi.org/10.2135/cropsci2018.03.0209
URL: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci2018.03.0209
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Citación
Aguate, Fernando Matíass; Crossa, José; Balzarini, Monica Graciela; Effect of missing values on variance component estimates in multienvironment trials; Crop Science Society of America; Crop Science; 59; 2; 3-2019; 508-517
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES