Mostrar el registro sencillo del ítem

dc.contributor.author
Chernousov, Vladimir  
dc.contributor.author
Gille, Philippe  
dc.contributor.author
Pianzola, Arturo  
dc.date.available
2020-08-26T15:13:00Z  
dc.date.issued
2014-01  
dc.identifier.citation
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324  
dc.identifier.issn
1664-3615  
dc.identifier.uri
http://hdl.handle.net/11336/112444  
dc.description.abstract
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BUILDING  
dc.subject
CONJUGACY  
dc.subject
LAURENT POLYNOMIALS  
dc.subject
LOOP REDUCTIVE GROUP SCHEME  
dc.subject
NON-ABELIAN COHOMOLOGY  
dc.subject
TORSOR  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Conjugacy theorems for loop reductive group schemes and Lie algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-25T15:23:47Z  
dc.journal.volume
4  
dc.journal.number
2  
dc.journal.pagination
281-324  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Chernousov, Vladimir. University of Alberta; Canadá  
dc.description.fil
Fil: Gille, Philippe. University of Alberta; Canadá  
dc.description.fil
Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Bulletin of Mathematical Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13373-014-0052-8