Mostrar el registro sencillo del ítem
dc.contributor.author
Chernousov, Vladimir
dc.contributor.author
Gille, Philippe
dc.contributor.author
Pianzola, Arturo
dc.date.available
2020-08-26T15:13:00Z
dc.date.issued
2014-01
dc.identifier.citation
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324
dc.identifier.issn
1664-3615
dc.identifier.uri
http://hdl.handle.net/11336/112444
dc.description.abstract
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
BUILDING
dc.subject
CONJUGACY
dc.subject
LAURENT POLYNOMIALS
dc.subject
LOOP REDUCTIVE GROUP SCHEME
dc.subject
NON-ABELIAN COHOMOLOGY
dc.subject
TORSOR
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Conjugacy theorems for loop reductive group schemes and Lie algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-25T15:23:47Z
dc.journal.volume
4
dc.journal.number
2
dc.journal.pagination
281-324
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Chernousov, Vladimir. University of Alberta; Canadá
dc.description.fil
Fil: Gille, Philippe. University of Alberta; Canadá
dc.description.fil
Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Bulletin of Mathematical Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13373-014-0052-8
Archivos asociados