Artículo
Conjugacy theorems for loop reductive group schemes and Lie algebras
Fecha de publicación:
01/2014
Editorial:
Springer
Revista:
Bulletin of Mathematical Sciences
ISSN:
1664-3615
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324
Compartir
Altmétricas