Mostrar el registro sencillo del ítem
dc.contributor.author
Budde, Carlos E.
dc.contributor.author
D'argenio, Pedro Ruben
dc.contributor.author
Hartmanns, Arnd
dc.date.available
2020-08-20T21:41:17Z
dc.date.issued
2019-04
dc.identifier.citation
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108
dc.identifier.issn
0167-6423
dc.identifier.uri
http://hdl.handle.net/11336/112096
dc.description.abstract
In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
RARE EVENT SIMULATION
dc.subject
IMPORTANCE SPLITTING
dc.subject
IMPORTANCE FUNCTION
dc.subject
STATISTICAL MODEL CHECKING
dc.subject
TRANSIENT ANALYSIS
dc.subject
STEADY-STATE ANALYSIS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automated compositional importance splitting
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-08-20T20:29:41Z
dc.journal.volume
174
dc.journal.pagination
90-108
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos
dc.description.fil
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos
dc.journal.title
Science of Computer Programming
dc.rights.embargoDate
2023-04-01
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scico.2019.01.006
Archivos asociados