Mostrar el registro sencillo del ítem

dc.contributor.author
Budde, Carlos E.  
dc.contributor.author
D'argenio, Pedro Ruben  
dc.contributor.author
Hartmanns, Arnd  
dc.date.available
2020-08-20T21:41:17Z  
dc.date.issued
2019-04  
dc.identifier.citation
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108  
dc.identifier.issn
0167-6423  
dc.identifier.uri
http://hdl.handle.net/11336/112096  
dc.description.abstract
In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RARE EVENT SIMULATION  
dc.subject
IMPORTANCE SPLITTING  
dc.subject
IMPORTANCE FUNCTION  
dc.subject
STATISTICAL MODEL CHECKING  
dc.subject
TRANSIENT ANALYSIS  
dc.subject
STEADY-STATE ANALYSIS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automated compositional importance splitting  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-20T20:29:41Z  
dc.journal.volume
174  
dc.journal.pagination
90-108  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Budde, Carlos E.. Universiteit Twente; Países Bajos  
dc.description.fil
Fil: D'argenio, Pedro Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Hartmanns, Arnd. Universiteit Twente; Países Bajos  
dc.journal.title
Science of Computer Programming  
dc.rights.embargoDate
2023-04-01  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scico.2019.01.006