Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automated compositional importance splitting

Budde, Carlos E.; D'argenio, Pedro RubenIcon ; Hartmanns, Arnd
Fecha de publicación: 04/2019
Editorial: Elsevier Science
Revista: Science of Computer Programming
ISSN: 0167-6423
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In the formal verification of stochastic systems, statistical model checking usessimulation to overcome the state space explosion problem of probabilistic modelchecking. Yet its runtime explodes when faced with rare events, unless a rareevent simulation method like importance splitting is used. The effectiveness ofimportance splitting hinges on nontrivial model-specific inputs: an importancefunction with matching splitting thresholds. This prevents its use by non-expertsfor general classes of models. In this paper, we present an automated methodto derive the importance function. It considers both the structure of the modeland of the formula characterising the rare event. It is memory-efficient by ex-ploiting the compositional nature of formal models. We experimentally evaluateit in various combinations with two approaches to threshold selection as well asdifferent splitting techniques for steady-state and transient properties. We findthatRestartsplitting combined with thresholds determined via a new expectedsuccess method most reliably succeeds and performs very well for transient proper-ties. It remains competitive in the steady-state case, which is however challengingto all combinations we consider. All methods are implemented in themodes tool of the Modest Toolset and the Figrare event simulator.
Palabras clave: RARE EVENT SIMULATION , IMPORTANCE SPLITTING , IMPORTANCE FUNCTION , STATISTICAL MODEL CHECKING , TRANSIENT ANALYSIS , STEADY-STATE ANALYSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.057Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/embargoedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/112096
URL: https://linkinghub.elsevier.com/retrieve/pii/S0167642318301503
DOI: http://dx.doi.org/10.1016/j.scico.2019.01.006
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Budde, Carlos E.; D'argenio, Pedro Ruben; Hartmanns, Arnd; Automated compositional importance splitting; Elsevier Science; Science of Computer Programming; 174; 4-2019; 90-108
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES