Mostrar el registro sencillo del ítem

dc.contributor.author
Mendes, Poliana  
dc.contributor.author
Velazco, Santiago José Elías  
dc.contributor.author
Andrade, André Felipe Alves de  
dc.contributor.author
de Marco Junior, Paulo  
dc.date.available
2020-08-20T20:52:26Z  
dc.date.issued
2020-06  
dc.identifier.citation
Mendes, Poliana; Velazco, Santiago José Elías; Andrade, André Felipe Alves de; de Marco Junior, Paulo; Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy; Elsevier Science; Ecological Modelling; 431; 109180; 6-2020; 1-11  
dc.identifier.issn
0304-3800  
dc.identifier.uri
http://hdl.handle.net/11336/112087  
dc.description.abstract
Species distribution models can be affected by overprediction when dispersal movement is not incorporated into the modelling process. We compared the efficiency of seven methods that take into account spatial constraints to reduce overprediction when using four algorithms for species distribution models. By using a virtual ecologist approach, we were able to measure the accuracy of each model in predicting actual species distributions. We built 40 virtual species distributions within the Neotropical realm. Then, we randomly sampled 50 occurrences that were used in seven spatially restricted species distribution models (hereafter called M-SDMs) and a non-spatially restricted ecological niche model (ENM). We used four algorithms; Maximum Entropy, Generalized Linear Models, Random Forest, and Support Vector Machine. M-SDM methods were divided into a priori methods, in which spatial restrictions were inserted with environmental variables in the modelling process, and a posteriori methods, in which reachable and suitable areas were overlapped. M-SDM efficiency was obtained by calculating the difference in commission and omission errors between M-SDMs and ENMs. We used linear mixed-effects models to test if differences in commission and omission errors varied among the M-SDMs and algorithms. Our results indicate that overall M-SDMs reduce overprediction with no increase in underprediction compared to ENMs with few exceptions, such as a priori methods combined with the Support Vector Machine algorithm. There is a high variation in modelling performance among species, but there were only a few cases in which overprediction or underprediction increased. We only compared methods that do not require species dispersal data, guaranteeing that they can be applied to less-studied species. We advocate that species distribution modellers should not ignore spatial constraints, especially because they can be included in models at low costs but high benefits in terms of overprediction reduction.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ECOLOGICAL NICHE MODELLING  
dc.subject
MODEL OVERPREDICTION  
dc.subject
SPATIAL CONSTRAINTS  
dc.subject
SPECIES DISPERSAL  
dc.subject
SPECIES DISTRIBUTION MODEL  
dc.subject
VIRTUAL ECOLOGIST APPROACH  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-19T19:33:31Z  
dc.journal.volume
431  
dc.journal.number
109180  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Mendes, Poliana. Universidade Federal de Goiás; Brasil. Laval University. Centre Hospitalier de L'universite Laval; Canadá  
dc.description.fil
Fil: Velazco, Santiago José Elías. Universidade Federal de Goiás; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina  
dc.description.fil
Fil: Andrade, André Felipe Alves de. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: de Marco Junior, Paulo. Universidade Federal de Goiás; Brasil  
dc.journal.title
Ecological Modelling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304380020302519  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecolmodel.2020.109180