Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy

Mendes, Poliana; Velazco, Santiago José ElíasIcon ; Andrade, André Felipe Alves de; de Marco Junior, Paulo
Fecha de publicación: 06/2020
Editorial: Elsevier Science
Revista: Ecological Modelling
ISSN: 0304-3800
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Species distribution models can be affected by overprediction when dispersal movement is not incorporated into the modelling process. We compared the efficiency of seven methods that take into account spatial constraints to reduce overprediction when using four algorithms for species distribution models. By using a virtual ecologist approach, we were able to measure the accuracy of each model in predicting actual species distributions. We built 40 virtual species distributions within the Neotropical realm. Then, we randomly sampled 50 occurrences that were used in seven spatially restricted species distribution models (hereafter called M-SDMs) and a non-spatially restricted ecological niche model (ENM). We used four algorithms; Maximum Entropy, Generalized Linear Models, Random Forest, and Support Vector Machine. M-SDM methods were divided into a priori methods, in which spatial restrictions were inserted with environmental variables in the modelling process, and a posteriori methods, in which reachable and suitable areas were overlapped. M-SDM efficiency was obtained by calculating the difference in commission and omission errors between M-SDMs and ENMs. We used linear mixed-effects models to test if differences in commission and omission errors varied among the M-SDMs and algorithms. Our results indicate that overall M-SDMs reduce overprediction with no increase in underprediction compared to ENMs with few exceptions, such as a priori methods combined with the Support Vector Machine algorithm. There is a high variation in modelling performance among species, but there were only a few cases in which overprediction or underprediction increased. We only compared methods that do not require species dispersal data, guaranteeing that they can be applied to less-studied species. We advocate that species distribution modellers should not ignore spatial constraints, especially because they can be included in models at low costs but high benefits in terms of overprediction reduction.
Palabras clave: ECOLOGICAL NICHE MODELLING , MODEL OVERPREDICTION , SPATIAL CONSTRAINTS , SPECIES DISPERSAL , SPECIES DISTRIBUTION MODEL , VIRTUAL ECOLOGIST APPROACH
Ver el registro completo
 
Archivos asociados
Tamaño: 2.178Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/112087
URL: https://www.sciencedirect.com/science/article/abs/pii/S0304380020302519
DOI: http://dx.doi.org/10.1016/j.ecolmodel.2020.109180
Colecciones
Articulos(IBS)
Articulos de INSTITUTO DE BIOLOGIA SUBTROPICAL
Citación
Mendes, Poliana; Velazco, Santiago José Elías; Andrade, André Felipe Alves de; de Marco Junior, Paulo; Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy; Elsevier Science; Ecological Modelling; 431; 109180; 6-2020; 1-11
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Modeling Water Yield: Assessing the Role of Site and Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model
    Scordo, Facundo ; Lavender, Thomas Michael; Seitz, Carina ; Perillo, Vanesa Liliana ; Rusak, James A.; Piccolo, Maria Cintia ; Perillo, Gerardo Miguel E. (MDPI, 2018-10-23)
  • Artículo La utilización del MET (model evaluation tool) para la verificación de los pronósticos del modelo wrf-arw/shn-smn durante la primavera de 2011
    Charó, Gisela Daniela ; Collini, Estela Angela; Dillon, María Eugenia (Centro Argentino de Meteorólogos, 2014-12)
  • Artículo Ponderaciones de la información familiar e individual en modelos animales y BLUP: 1. Modelos con grupos genéticos, 2. Modelos con paternidad incierta
    Vitezica, Zulma G.; Cantet, Rodolfo Juan Carlos (Asociación Interprofesional para el Desarrollo Agrario, 2003-12)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES