Artículo
Majorization Bounds for Ritz Values of Self-Adjoint Matrices
Fecha de publicación:
04/2020
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Matrix Analysis And Applications
ISSN:
0895-4798
e-ISSN:
1095-7162
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results prove recent conjectures by Knyazev, Argentati, and Zhu, which extend several known results for one dimensional subspaces to arbitrary subspaces. In addition, we improve Nakatsukasa's version the tan Θ theorem of Davis and Kahan. As a consequence, we obtain new quadratic a posteriori bounds for the absolute change in Ritz values.
Palabras clave:
PRINCIPAL ANGLES
,
RITZ VALUES
,
RAYLEIGH QUOTIENTS
,
MAJORIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Stojanoff, Demetrio; Zarate, Sebastian Gonzalo; Majorization Bounds for Ritz Values of Self-Adjoint Matrices; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 41; 2; 4-2020; 554-572
Compartir
Altmétricas