Artículo
Geometrical significance of the lowner-heinz inequality
Fecha de publicación:
03/2000
Editorial:
American Mathematical Society
Revista:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
e-ISSN:
1088-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is proven that the Lowner-Heinz inequality ∥A^tB^t∥ ∥AB∥^t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C- algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space.
Palabras clave:
Lowner-Heinz
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Geometrical significance of the lowner-heinz inequality; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 4; 3-2000; 1031-1037
Compartir