Mostrar el registro sencillo del ítem
dc.contributor.author
Corach, Gustavo
dc.contributor.author
Maestripieri, Alejandra Laura
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2020-08-05T15:35:03Z
dc.date.issued
2001-01
dc.identifier.citation
Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique projections and Schur complements; University Szeged; Acta Scientiarum Mathematicarum (Szeged); 67; 1; 1-2001; 337-356
dc.identifier.issn
0001-6969
dc.identifier.uri
http://hdl.handle.net/11336/110895
dc.description.abstract
Let H be a Hilbert space, L(H) the algebra of all bounded linear operators on H and ⟨,⟩_A : H x H → C the bounded sesquilinear form induced by a selfadjoint A ∈ L(H), ⟨ξ, n⟩_A =⟨Aξ, n⟩, ξ , n ∈ H. Given T∈ L(H), T is A-selfadjoint if AT = T^*A. If S} ⊆ H is a closed subspace, we study the set of A-selfadjoint projections onto S, P(A,S} ) = {Q ∈ L(H): Q^2 = Q, R(Q) = S , AQ = Q^*A for different choices of A, mainly under the hypothesis that A ≥ 0. There is a closed relationship between the A-selfadjoint projections onto S and the shorted operator (also called Schur complement) of A to S ^⊥. Using this relation we find several conditions which areequivalent to the fact that P(A, S), in particular in the case of A≥0 with A injective or with R(A) closed. If A is itself a projection, we relate the set P(A,S) with the existence of a projection with fixed kernel and range and we determine its norm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
University Szeged
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
OBLIQUE PROJECTION
dc.subject
ORTHOGONAL
dc.subject
SCHUR COMPLEMENT
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Oblique projections and Schur complements
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-21T20:23:04Z
dc.journal.volume
67
dc.journal.number
1
dc.journal.pagination
337-356
dc.journal.pais
Hungría
dc.journal.ciudad
Szeged
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Acta Scientiarum Mathematicarum (Szeged)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerVolume.action?id=1971&dataObjectType=volume&noDataSet=true&style=
Archivos asociados