Artículo
Oblique projections and Schur complements
Fecha de publicación:
01/2001
Editorial:
University Szeged
Revista:
Acta Scientiarum Mathematicarum (Szeged)
ISSN:
0001-6969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a Hilbert space, L(H) the algebra of all bounded linear operators on H and ⟨,⟩_A : H x H → C the bounded sesquilinear form induced by a selfadjoint A ∈ L(H), ⟨ξ, n⟩_A =⟨Aξ, n⟩, ξ , n ∈ H. Given T∈ L(H), T is A-selfadjoint if AT = T^*A. If S} ⊆ H is a closed subspace, we study the set of A-selfadjoint projections onto S, P(A,S} ) = {Q ∈ L(H): Q^2 = Q, R(Q) = S , AQ = Q^*A for different choices of A, mainly under the hypothesis that A ≥ 0. There is a closed relationship between the A-selfadjoint projections onto S and the shorted operator (also called Schur complement) of A to S ^⊥. Using this relation we find several conditions which areequivalent to the fact that P(A, S), in particular in the case of A≥0 with A injective or with R(A) closed. If A is itself a projection, we relate the set P(A,S) with the existence of a projection with fixed kernel and range and we determine its norm.
Palabras clave:
OBLIQUE PROJECTION
,
ORTHOGONAL
,
SCHUR COMPLEMENT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Corach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Oblique projections and Schur complements; University Szeged; Acta Scientiarum Mathematicarum (Szeged); 67; 1; 1-2001; 337-356
Compartir