Mostrar el registro sencillo del ítem

dc.contributor.author
Borges, João B.  
dc.contributor.author
Ramos, Heitor S.  
dc.contributor.author
Mini, Raquel A.F.  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Frery, Alejandro C.  
dc.contributor.author
Loureiro, Antonio A.F.  
dc.date.available
2020-07-30T19:50:53Z  
dc.date.issued
2019-12  
dc.identifier.citation
Borges, João B.; Ramos, Heitor S.; Mini, Raquel A.F.; Rosso, Osvaldo Aníbal; Frery, Alejandro C.; et al.; Learning and distinguishing time series dynamics via ordinal patterns transition graphs; Elsevier Science Inc; Applied Mathematics and Computation; 362; 12-2019; 1-14  
dc.identifier.issn
0096-3003  
dc.identifier.uri
http://hdl.handle.net/11336/110599  
dc.description.abstract
Strategies based on the extraction of measures from ordinal patterns transformation, such as probability distributions and transition graphs, have reached relevant advancements in distinguishing different time series dynamics. However, the reliability of such measures depends on the appropriate selection of parameters and the need for large time series. In this paper we present a method for the characterization of distinct time series behaviors based on the probability of self-transitions, a measure extracted from their transformation onto ordinal patterns transition graphs. We validate our method by investigating the main characteristics of periodic, random, and chaotic time series. By the application of learning strategies, we precisely classify different randomness levels in time series, reaching 100% in accuracy, and advances in performing the hard task of distinguishing random noises from chaotic time series, correctly distinguishing 96.61% of the cases. Furthermore, we show that this strategy is well suitable to be used by many applications, even for short time series, and does not depend on the selection of parameters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BANDT-POMPE TRANSFORMATION  
dc.subject
CHAOS  
dc.subject
RANDOMNESS  
dc.subject
TIME SERIES CHARACTERIZATION  
dc.subject
TIME SERIES CLASSIFICATION  
dc.subject
TIME SERIES DYNAMICS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning and distinguishing time series dynamics via ordinal patterns transition graphs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-24T17:46:19Z  
dc.journal.volume
362  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Borges, João B.. Universidade Federal de Minas Gerais; Brasil. Universidade Federal do Rio Grande do Norte; Brasil  
dc.description.fil
Fil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Mini, Raquel A.F.. Pontificia Universidade Catolica de Minas Gerais;  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina  
dc.description.fil
Fil: Frery, Alejandro C.. Universidade Federal de Alagoas; Brasil  
dc.description.fil
Fil: Loureiro, Antonio A.F.. Universidade Federal de Minas Gerais; Brasil  
dc.journal.title
Applied Mathematics and Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.amc.2019.06.068  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300319305375