Mostrar el registro sencillo del ítem
dc.contributor.author
Borges, João B.
dc.contributor.author
Ramos, Heitor S.
dc.contributor.author
Mini, Raquel A.F.
dc.contributor.author
Rosso, Osvaldo Aníbal
dc.contributor.author
Frery, Alejandro C.
dc.contributor.author
Loureiro, Antonio A.F.
dc.date.available
2020-07-30T19:50:53Z
dc.date.issued
2019-12
dc.identifier.citation
Borges, João B.; Ramos, Heitor S.; Mini, Raquel A.F.; Rosso, Osvaldo Aníbal; Frery, Alejandro C.; et al.; Learning and distinguishing time series dynamics via ordinal patterns transition graphs; Elsevier Science Inc; Applied Mathematics and Computation; 362; 12-2019; 1-14
dc.identifier.issn
0096-3003
dc.identifier.uri
http://hdl.handle.net/11336/110599
dc.description.abstract
Strategies based on the extraction of measures from ordinal patterns transformation, such as probability distributions and transition graphs, have reached relevant advancements in distinguishing different time series dynamics. However, the reliability of such measures depends on the appropriate selection of parameters and the need for large time series. In this paper we present a method for the characterization of distinct time series behaviors based on the probability of self-transitions, a measure extracted from their transformation onto ordinal patterns transition graphs. We validate our method by investigating the main characteristics of periodic, random, and chaotic time series. By the application of learning strategies, we precisely classify different randomness levels in time series, reaching 100% in accuracy, and advances in performing the hard task of distinguishing random noises from chaotic time series, correctly distinguishing 96.61% of the cases. Furthermore, we show that this strategy is well suitable to be used by many applications, even for short time series, and does not depend on the selection of parameters.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BANDT-POMPE TRANSFORMATION
dc.subject
CHAOS
dc.subject
RANDOMNESS
dc.subject
TIME SERIES CHARACTERIZATION
dc.subject
TIME SERIES CLASSIFICATION
dc.subject
TIME SERIES DYNAMICS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning and distinguishing time series dynamics via ordinal patterns transition graphs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-24T17:46:19Z
dc.journal.volume
362
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Borges, João B.. Universidade Federal de Minas Gerais; Brasil. Universidade Federal do Rio Grande do Norte; Brasil
dc.description.fil
Fil: Ramos, Heitor S.. Universidade Federal de Minas Gerais; Brasil
dc.description.fil
Fil: Mini, Raquel A.F.. Pontificia Universidade Catolica de Minas Gerais;
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Federal de Alagoas; Brasil. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina
dc.description.fil
Fil: Frery, Alejandro C.. Universidade Federal de Alagoas; Brasil
dc.description.fil
Fil: Loureiro, Antonio A.F.. Universidade Federal de Minas Gerais; Brasil
dc.journal.title
Applied Mathematics and Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.amc.2019.06.068
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0096300319305375
Archivos asociados