Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning and distinguishing time series dynamics via ordinal patterns transition graphs

Borges, João B.; Ramos, Heitor S.; Mini, Raquel A.F.; Rosso, Osvaldo AníbalIcon ; Frery, Alejandro C.; Loureiro, Antonio A.F.
Fecha de publicación: 12/2019
Editorial: Elsevier Science Inc
Revista: Applied Mathematics and Computation
ISSN: 0096-3003
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Strategies based on the extraction of measures from ordinal patterns transformation, such as probability distributions and transition graphs, have reached relevant advancements in distinguishing different time series dynamics. However, the reliability of such measures depends on the appropriate selection of parameters and the need for large time series. In this paper we present a method for the characterization of distinct time series behaviors based on the probability of self-transitions, a measure extracted from their transformation onto ordinal patterns transition graphs. We validate our method by investigating the main characteristics of periodic, random, and chaotic time series. By the application of learning strategies, we precisely classify different randomness levels in time series, reaching 100% in accuracy, and advances in performing the hard task of distinguishing random noises from chaotic time series, correctly distinguishing 96.61% of the cases. Furthermore, we show that this strategy is well suitable to be used by many applications, even for short time series, and does not depend on the selection of parameters.
Palabras clave: BANDT-POMPE TRANSFORMATION , CHAOS , RANDOMNESS , TIME SERIES CHARACTERIZATION , TIME SERIES CLASSIFICATION , TIME SERIES DYNAMICS
Ver el registro completo
 
Archivos asociados
Tamaño: 5.363Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/110599
DOI: http://dx.doi.org/10.1016/j.amc.2019.06.068
URL: https://www.sciencedirect.com/science/article/abs/pii/S0096300319305375
Colecciones
Articulos (IMTIB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL E INGENIERIA BIOMEDICA
Citación
Borges, João B.; Ramos, Heitor S.; Mini, Raquel A.F.; Rosso, Osvaldo Aníbal; Frery, Alejandro C.; et al.; Learning and distinguishing time series dynamics via ordinal patterns transition graphs; Elsevier Science Inc; Applied Mathematics and Computation; 362; 12-2019; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES