Mostrar el registro sencillo del ítem

dc.contributor.author
Adam, Eduardo Jose  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.other
de Oliveira Serra, Ginalber Luiz  
dc.date.available
2020-07-24T15:48:00Z  
dc.date.issued
2012  
dc.identifier.citation
Adam, Eduardo Jose; González, Alejandro Hernán; MPC with learning properties applied to finite-horizon repetitive systems; IntechOpen; 2012; 193-213  
dc.identifier.isbn
978-953-51-0677-7  
dc.identifier.uri
http://hdl.handle.net/11336/110188  
dc.description.abstract
A repetitive system is one that continuously repeats a finite-duration procedure (operation) along the time. This kind of systems can be found in several industrial fields such as robot manipulation ((Tan, Huang, Lee & Tay, 2003)), injection molding ((Yao, Gao & Allgöwer, 2008)), batch processes ((Bonvin et al., 1984; Lee & Lee, 1999)) and semiconductor processes ((Moyne, Castillo, & Hurwitz, 2003)). Because of the repetitive characteristic, these systems have two count indexes or time scales: o e for the time running within the interval each operation lasts, and the other for the number of operations or repetitions in the continuous sequence. Consequently, it can be said that a control strategy for repetitive systems requires accounting for two different objectives: a short-term disturbance rejection during a finite-duration single operation in the continuous sequence (this frequently means the tracking of a predetermined optimal trajectory) and the long-term disturbance rejection from operation to operation (i.e., considering each operation as a single point of a continuous process1). The MPC proposed in this Chapter is formulated under a closed-loop paradigm ((Rossiter, 2003)). The basic idea of a closed-loop paradigm is to choose a stabilizing control law and assume that this law (underlying input sequence) is present throughout the predictions. More precisely, the MPC propose here is an Infinite Horizon MPC (IHMPC) that includes an underlying control sequence as a (deficient) reference candidate to be improved for the tracking control. Then, by solving on line a constrained optimization problem, the input sequence is corrected, and so the learning updating is performed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IntechOpen  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MODEL PREDICTIVE CONTROL  
dc.subject
REPETITIVE SYSTEMS  
dc.subject
LEARNING PROPERTIES  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
MPC with learning properties applied to finite-horizon repetitive systems  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-06-16T13:38:35Z  
dc.journal.pagination
193-213  
dc.journal.pais
Croacia  
dc.description.fil
Fil: Adam, Eduardo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/frontiers-in-advanced-control-systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/frontiers-in-advanced-control-systems/iterative-learning-mpc-an-alternative-strategy  
dc.conicet.paginas
278  
dc.source.titulo
Frontiers in Advanced Control System